Selected Trigonometry Exercises

Exercise 26:

Verify:
\displaystyle{\tan {3x}}=\frac{\tan {x}(3-\tan^{2}x)}{1-3\tan^{2}x}

Solution:

(1)   \begin{equation*} \begin{split} \displaystyle{\tan {3x}}&=\tan {(2x+x)}\\ &=\frac{\tan {2x}+\tan {x}}{1-\tan {2x}\tan {x}}\\ &=\frac{\frac{2\tan {x}}{1-\tan^{2}x+\tan {x}}}{1-\frac{2\tan {x}}{1-\tan^{2}x}\tan {x}}\\ &=\frac{2\tan {x}+ \tan {x}(1-\tan^{2}x)}{(1-\tan^{2}x)-2\tan {x}\tan{x}}\\ &=\frac{2\tan {x}+ \tan {x}(1-\tan^{2}x)}{(1-\tan^{2}x)-2\tan^{2}{x}}\\ &=\frac{3\tan {x}-\tan^{3}{x}}{1-3\tan^{2}x}\\ &=\frac{\tan {x}(3-\tan^{2}x)}{1-3\tan^{2}x} \end{split} \end{equation*}

Finally:
\displaystyle{\tan {3x}}=\frac{\tan {x}(3-\tan^{2}x)}{1-3\tan^{2}x}

Exercise 27:

Solve for \theta:
\sin \theta-\sqrt{3}\cos \theta=\sqrt{3}

Solution:

ex27

We have:
\sin \theta-\sqrt{3}\sqrt{1-\sin^{2} \theta}=\sqrt{3}

This yields:
\sin \theta -\sqrt{3}=\sqrt{3}\sqrt{1-\sin^{2} \theta}

Let’s square both side:
(\sin \theta -\sqrt{3})^{2}=3(1-\sin^{2} \theta)

\sin^{2} \theta-2\sqrt{3}\sin \theta+3=3-3\sin^{2} \theta
\sin^{2} \theta+3\sin^{2} \theta-2\sqrt{3}\sin \theta=0
4\sin^{2} \theta-2\sqrt{3}\sin \theta=0
\sin {\theta}(4\sin \theta-2\sqrt{3})=0

We have a couple of cases for base angles here:
\sin \theta=0
Looking at the figure, we see that the red lines are the values of the cosine when the sine is 0
The angles here are:
\theta_{1}=0^{\circ} and \theta_{2}=180^{\circ}
We have to exclude 0^{\circ} since it does not verify the equation.
However 180^{\circ} is a valid solution since \cos 180^{\circ}=-1

For the second factor:
4\sin \theta-2\sqrt{3}=0\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}

From the figure we see two values:
The third angle is 60^{\circ}
We can see that \cos 60^{\circ}=\frac{1}{2}
If we try to plug the values in the equation it is not a solution.

The fourth angle is 120^{\circ}
We can see that \cos 120^{\circ}=-\frac{\sqrt{3}}{2}
This one verifies our equation.
So the angles are:
120^{\circ}+k_{1}360^{\circ} and 180^{\circ}+k_{2}360^{\circ}

Exercise 28:

Solve for \theta:
13\cot \theta+ 11 \csc \theta=6\sin \theta

Solution:

ex28

We have:
13\frac{\cos \theta}{\sin \theta}+\frac{11}{\sin \theta}=6 \sin \theta

13\cos \theta +11=6\sin^{2} \theta

13\cos \theta +11=6(1-\cos^{2} \theta)
6-6\cos^{2} \theta=13\cos \theta+11

We get:
6\cos^{2} \theta+13\cos \theta+11-6=0
6\cos^{2} \theta+13\cos \theta+5=0

Let \cos \theta=x with -1 \leq x \leq 1
We write:
6x^{2}+13x+5=0
\Delta=169-4\times 6\times 5
\Delta=49
\sqrt{\Delta}=7

The values of x:
x_{1}=\frac{-13+7}{12}=-\frac{1}{2}

x_{2}=\frac{-13-7}{12}=-\frac{20}{2}
x_{2} is not valid since it is less than -1

The possible values of \theta
Looking at the figure, for this cosine we have two possible values for the sine

\sin \theta_{1}=\frac{\sqrt{3}}{2}
This yields:
\theta_{1}=120^{\circ}
Plug in:
6\sin \theta_{1}=6 \times \frac{\sqrt{3}}{2}=3\sqrt{3}

Now the left side:
13 \frac{\frac{-1}{2}}{\frac{\sqrt{3}}{3}}+\frac{11}{\frac{3}{2}}=3\sqrt{3}

The second angle is:
\theta_{2}=240^{\circ}
When we plug in this does verifies the equation.

The solutions:
\theta_{1}=120^{\circ}+k_{1}360^{\circ}
\theta_{2}=240^{\circ}+k_{2}360^{\circ}

Exercise 29:

Solve for \theta:
\sqrt{3}\sec \theta=2

Solution:

ex29

We can write:

\sqrt{3}\cdot \frac{1}{\cos \theta}=2

2\cos \theta=\sqrt{3}

\cos \theta =\frac{\sqrt{3}}{2}\Leftarrow \theta=\frac{\pi}{6}

The base angle here is \frac{\pi}{6}

Looking at the graph we have the folloing solutions:

\theta=\frac{\pi}{6}+2K_{1}\pi and \theta=\frac{11\pi}{6}+2K_{1}\pi

 
Exercise 30:

Solve for \theta:
\sqrt{2}\csc x+5=3

Solution:

\sqrt{2}\csc x+5=3

ex30

\frac{\sqrt{2}}{\sin x}+5=3

\frac{\sqrt{2}}{\sin x}=-2

\sqrt{2}=-2\sin x

\sin x=-\frac{\sqrt{2}}{2}

The base angle here is \frac{\pi}{4}

From the graph:

We can see that the two angles are:

\pi+\frac{\pi}{4}=\frac{5\pi}{4}

and

2\pi-\frac{\pi}{4}=\frac{7\pi}{4}

Finally the soultions are:

\frac{5\pi}{4}+2k_{1}\pi and \frac{7\pi}{4}+2k_{1}\pi

Exercise 31:

Solve for \theta:
\cos 2\theta-3\sin \theta-2=0

Solution:

ex31

we know that:

\cos 2\theta=1-2\sin^{2}\theta

The equation becomes:

1-2\sin^{2}\theta-3\sin \theta-2=0

-2\sin^{2}\theta-3\sin \theta-1=0

We re-write:

2\sin^{2}\theta+3\sin \theta+1=0

let \sin \theta=x

2x^{2}+3x+1=0

\Delta=9-8=0

x_{1}=\frac{-3+1}{4}=-\frac{1}{2}

The base angle is \frac{\pi}{6}

From the graph:

\theta_{1}=\pi+\frac{\pi}{6}=\frac{7\pi}{6}

\theta_{2}=2\pi-\frac{\pi}{6}=\frac{11\pi}{6}

Both verify the equation.

The second case:

x_{2}=\frac{-3-1}{4}=-1

The base angle here is \frac{3\pi}{2} and is the only one:

\theta_{3}=\frac{3\pi}{2}

This also satisfies the equation:

The solutions:

\theta_{1}=\frac{7\pi}{6}, \theta_{2}=\frac{3\pi}{2} and \theta_{3}=\frac{11\pi}{6}

Exercise 32:

Solve for \theta:
\sin \frac{\theta}{2}+ \cos \theta=0

Solution:

But we know that:
\cos \theta=1-2\sin^{2}\frac{\theta}{2}

We get:
\sin \frac{\theta}{2}+1-2\sin^{2}\frac{\theta}{2}=0

2\sin^{2}\frac{\theta}{2}-\sin \frac{\theta}{2}-1=0

Let \frac{\theta}{2}=x

We write:
2x^{2}-x-1=0
\Delta=1+8=9\Rightarrow \sqrt{\Delta}=3
x_{1}=\frac{1+3}{4}=1
x_{2}=\frac{1-3}{4}=\frac{-1}{2}

Case 1:
\sin \frac{\theta}{2}=1\Leftarrow \frac{\theta}{2}=\frac{\pi}{2}
This gives:
\theta_{1}=\pi
This verifies the equation:
1-1=0

Case 2:

\sin \frac{\theta}{2}=-\frac{1}{2}

The base angle here is \frac{\pi}{6}
Two subsequent cases here:
\frac{\theta}{2}=\pi+\frac{\pi}{6}=\frac{7\pi}{6}
This yields:
\theta_{2}=2\cdot \frac{7\pi}{6}=\frac{14\pi}{6}-2\pi=\frac{\pi}{3}
This does not verify the equation and is not a solution:
\frac{1}{2}+\frac{1}{2}\neq 0

The second case here:
\frac{\theta}{2}=2\pi-\frac{\pi}{6}=\frac{12\pi}{6}-\frac{\pi}{6}=\frac{11\pi}{6}
\theta_{3}=2\cdot\frac{11\pi}{6}-2\pi=\frac{10\pi}{6}=\frac{5\pi}{3}
Checking in the equation:
\frac{1}{2}+\frac{1}{2}\neq 0

The solutions:
\theta=\pi+2k\pi

Exercise 33:

Solve for \theta:
\sin 3\theta \cos 2\theta+\cos 3\theta \sin 2\theta=1

Solution:

\sin 3\theta \cos 2\theta+\cos 3\theta \sin 2\theta=1
\sin (3\theta+2\theta)=1
\sin (5\theta)=1

This gives:
5\theta=\frac{\pi}{2}+2k\pi
\theta=\frac{\pi}{10}+\frac{2k\pi}{5}

Exercise 34:

Solve for \theta:
2\cos^{2}{2\theta}+3\cos {2\theta}+1=0

Solution:

2\cos^{2}{2\theta}+3\cos {2\theta}+1=0
Let \cos {2\theta}=x
We can write:
2x^{2}+3x+1=0
\Delta=9-8=1\Rightarrow \sqrt{\Delta}=1

Two roots here:
x_{1}=\frac{-3+1}{4}=-\frac{1}{2}

This root leads to two solutions:
\cos {2\theta}=-\frac{1}{2}:

ex28

Case 1:
2\theta=\pi-\frac{\pi}{3}=\frac{2\pi}{3}
2\theta_{1}=\frac{2\pi}{3}+2k\pi \Rightarrow \theta_{1}=\frac{\pi}{3}+k\pi

Case 2:
2\theta=\pi+\frac{\pi}{3}=\frac{4\pi}{3}
2\theta_{1}=\frac{4\pi}{3}+2k\pi \Rightarrow \theta_{1}=\frac{2\pi}{3}+k\pi

Both cases verify the equation:
2\times (-\frac{1}{2})^{2}+3\times(\frac{-1}{2})+1=2\times \frac{2}{4}-\frac{3}{2}+1=0

For the second root:

x_{2}=-1
One solution here:
\cos {2\theta}=-1\Leftarrow 2\theta=\pi+ 2k\pi
The solution:
2\theta=\pi+2k\pi\Rightarrow \theta=\frac{\pi}{2}+k\pi
This verifies the equation:
2(1)+3(-1)+1=2-3+1=0

Finally the solutions are:
\frac{\pi}{3}+k_{1}\pi, \frac{\pi}{2}+k_{2}\pi and \frac{2\pi}{3}+k_{3}\pi

Exercise 35:

Solve for \theta:
\sin^{2}{4\theta}=0

Solution:

[accordion hideSpeed=”300″ showSpeed=”400″]

[item title=”Click here to see the solution to ex35 “]

\sin^{2}{4\theta}=0

Let \sin {4\theta}=x

We get:
x^{2}=1

Roots:

x_{1}=1
This means:
\sin {4\theta}=1\Leftarrow 4\theta=\frac{\pi}{2}+2k\pi
This yields:
\theta_{1}=\frac{\pi}{8}+\frac{k\pi}{2}

x_{1}=-1
\sin {4\theta}=-1\Leftarrow 4\theta=\frac{3\pi}{2}+2k\pi
This yields:
\theta_{2}=\frac{3\pi}{8}+\frac{k\pi}{2}

Finally:
The solutions are:
\frac{\pi}{8}+\frac{k\pi}{2} and \frac{3\pi}{8}+\frac{k\pi}{2}

Exercise 36:

Solve for \theta:
\sin 2\theta-\sin \theta=0

Solution:

\sin 2\theta-\sin \theta=0
We write:
2\sin \theta \cos \theta-\sin \theta=0
\sin {\theta}(2\cos \theta-1)=0

Two cases:
\sin \theta=0
This has two subsequent possibilities:
\theta_{1}=0+2k_{1}\pi
and
\theta_{2}=\pi+2k_{2}\pi

Both verify the equation.

The other case:

ex36
2\cos {\theta}-1=0
\cos {\theta}=\frac{1}{2}
Two subsequent solutions:
\theta_{3}=\frac{\pi}{3}+2k_{3}\pi
and
\theta_{4}=2\pi-\frac{\pi}{3}+2k_{4}\pi=\frac{5\pi}{3}+2k_{4}\pi

For \theta_{1}:
\sin {2\times 0}-\sin {0}=0
means 0-0=0 which is true.

For \theta_{2}:
\sin {2\times \pi}-\sin {\pi}=0
means 0-0=0 which is true.

For \theta_{3}:
\sin {(2\times \frac{\pi}{3})}-\sin {\frac{\pi}{3}}=0
means \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}=0 which is true.

For \theta_{4}:
\sin {(2\times \frac{5\pi}{3})}-\sin {\frac{5\pi}{3}}=0
\sin {\frac{4\pi}{3}}-\sin {\frac{5\pi}{3}}=0
-\frac{\sqrt{3}}{2}-\frac{(-\sqrt{3})}{2}=0 which is true.

Finally the solutions are:

0+2k_{1}\pi, \pi+2k_{2}\pi,\frac{\pi}{3}+2k_{3}\pi and \frac{5\pi}{3}+2k_{4}\pi

Exercise 37:

Solve for \theta:
2\cos ^{2} {2\theta}-3\cos {2\theta}=-1

Solution:

2\cos ^{2} {2\theta}-3\cos {2\theta}=-1

Let \cos {2\theta}=x

This yields:

2x^{2}-3x+1=0

\Delta=9-8=1

\sqrt{\Delta}=1

ex37

x_{1}=\frac{3+1}{4}=1

x_{2}=\frac{3-1}{4}=\frac{1}{2}

Case 1:

\cos {2\theta}=1 \Leftarrow 2\theta=0+2k_{1}\pi

This gives:

\theta_{1}=0+k_{1}\pi

Case 2:

\cos {2\theta}=\frac{1}{2}

Looking at the graph, we have two additional cases:

2\theta_{2}=\frac{\pi}{3}+2k_{2}\pi

\theta_{2}=\frac{\pi}{6}+k_{2}\pi

The other additional case:

2\theta_{3}=\frac{5\pi}{3}+2k_{3}\pi

\theta_{3}=\frac{5\pi}{6}+k_{3}\pi

Finally the solutions are:

0+k_{1}\pi,\frac{\pi}{6}+k_{2}\pi, \frac{5\pi}{6}+k_{3}\pi

Exercise 38:

Given A=30^{\circ}, b=12 and a=6

Find B, C and c

Solution:

Since b=2a, we have the angle B=90^{\circ}

That means C=60^{\circ}

ex38A

For side c

\frac{c}{\sin C}=\frac{a}{\sin A}

c=\frac{6\sin 60}{\sin 30}

c=6\sqrt{3}

c=10.39

Exercise 39:

Given A=43^{\circ}, b=37 and a=31

Find B, C and c

Solution:

Ex39

We can see that we two possible values for c:

a^{2}=b^{2}+c^{2}-2bc\cos A

This yields:

c^{2}-(2b\cos A)c+b^{2}-a^{2}=0

c^{2}-(2\times 37 \times \cos 43)c+37^{2}-31^{2}

c^{2}-54.12017c+408=0

\Delta=(-54.12017)^2-4\times 1\times 408=1296.992801

\sqrt{\Delta}=36.014

c_{1}=\frac{54.12017+36.014}{2}=45.067

c_{2}=\frac{54.12017-36.014}{2}=9.053

For c_{1}

\cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}=\frac{31^{2}+45.067^{2}-37^{2}}{2\times31 \times 45.067}

\cos B=0.580868

B=54.5^{\circ}

That means:

C=180-(43+54.5)=82.5^{\circ}

C=82.5^{\circ}

For c_{2}

\cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}=\frac{31^{2}+9.053^{2}-37^{2}}{2\times31 \times 9.053}

\cos B=-0.580886

B=125.5^{\circ}

That means:

C=180-(43+125.5)=11.5^{\circ}

C=11.5^{\circ}

[/item] [/accordion]

Exercise 40:

Given a=832, b=623 and c=345
Find Angles A, B and C

Solution:

[accordion hideSpeed=”300″ showSpeed=”400″]

[item title=”Click here to see the solution to ex40 “]

Looking at the sides we can deduct that the biggest angle is A

Let’s calculate it:

\cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}
\cos A=\frac{623^{2}+345^{2}-832^{2}}{2\times 623 \times 345}
\cos A=-0.4305255

m\angle A=115.5^{\circ}
No other angle is obtuse.

\frac{\sin A}{a}=\frac{\sin B}{b}
\sin B=\frac{b \sin A}{a}=\frac{623\times \sin 115.5}{832}

\sin B=0.675854
m\angle B=42.5^{\circ}

The angle C:
m\angle C=180-(115.5+42.5)=180-158=22^{\circ}

Finally:
m\angle A=115.5^{\circ},m\angle B=42.5^{\circ} and m\angle C=22^{\circ}

Exercise 41:

Given a=48, b=75 and c=63
Find Angles A, B and C

Solution:

Looking at the sides we can deduct that the biggest angle is B

Let’s calculate it:

\cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}
\cos B=\frac{48^{2}+63^{2}-75^{2}}{2\times 48 \times 63}
\cos B=-0.1071429

m\angle B=83.9^{\circ}
No other angle is obtuse.

\frac{\sin C}{c}=\frac{\sin B}{b}
\sin C=\frac{c \sin B}{b}=\frac{63\times \sin 83.85}{75}

\sin C=0.8351656594
m\angle C=56.6^{\circ}

The angle A:
m\angle A=180-(83.9+56.6)=180-140.5=39.5^{\circ}

Finally:
m\angle A=39.5^{\circ},m\angle B=83.9^{\circ} and m\angle C=56.6^{\circ}

Exercise 42:

Given C=51.5^{\circ}, c=707 and b=821
Find A, B and a

Solution:

ex42

We know that:
c^{2}=a^{2}+b^{2}-2ab\cos C
We get
a^{2}-(2b\cos C)a+b^{2}-c^{2}=0
a^{2}-(2\times 821\times \cos 51.5)a+821^{2}-707^{2}
a^{2}-1022.169a+174192=0

We solve for a:
\Delta=(-1022.169)^{2}-4\times 1\times 174192=348061.4646
\sqrt{\Delta}=589.967
a_{1}=\frac{1022.169+589.967}{2}=806

The angles:
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}

\cos A=\frac{821^{2}+707^{2}-806^{2}}{2\times 821 \times 707}

\cos A=0.451595
m\angle A=63.2^{\circ}
m\angle B=180-(63.2+51.5)=180-114.7=65.3

Case summary:
m\angle A=63.2^{\circ},m\angle B=65.3^{\circ} and a=806

a_{2}=\frac{1022.169-589.967}{2}=216

The angles:
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}

\cos A=\frac{821^{2}+707^{2}-216^{2}}{2\times 821 \times 707}

\cos A=0.9710051
m\angle A=13.8^{\circ}
m\angle B=180-(13.8+51.5)=180-65.3=114.7

Case summary:
m\angle A=13.8^{\circ},m\angle B=114.7^{\circ} and a=216

Exercise 43:

Simplify:

\displaystyle{\frac{\sin {\frac{\theta}{2}}}{\csc {\frac{\theta}{2}}}+\frac{\cos {\frac{\theta}{2}}}{\sec {\frac{\theta}{2}}}}

Solution:

\displaystyle{\frac{\sin {\frac{\theta}{2}}}{\csc {\frac{\theta}{2}}}+\frac{\cos {\frac{\theta}{2}}}{\sec {\frac{\theta}{2}}}}=\sin {\frac{x}{2}}\times \sin {\frac{x}{2}}+\cos {\frac{x}{2}}\times \cos {\frac{x}{2}}=\sin^{2} {\frac{x}{2}}+\cos^{2} {\frac{x}{2}}=1

Finally:

\displaystyle{\frac{\sin {\frac{\theta}{2}}}{\csc {\frac{\theta}{2}}}+\frac{\cos {\frac{\theta}{2}}}{\sec {\frac{\theta}{2}}}}=1

Exercise 44:

Simplify:

(1-sin^{2}\theta)(1+\tan^{2}\theta)

Solution:

(1-sin^{2}\theta)(1+\tan^{2}\theta)=\cos^{2}{\theta}(1+\frac{\sin^{2}\theta}{\cos^{2}\theta}=\cos^{2}{\theta}(\frac{\cos^{2}{\theta}+\sin^{2}{\theta}}{\cos^{2}{\theta}})=1

Exercise 45:

Verify that:

\sin(\theta+\pi)=-\sin \theta

Solution:

\sin(\theta+\pi)=\sin \theta \cos \pi+ \cos \theta \sin \pi=-\sin \theta+0=-\sin \theta

\sin(\theta+\pi)=-\sin \theta

Finally:

\sin(\theta+\pi)=-\sin \theta

Exercise 46:

Evaluate:

\sin(\theta+\frac{\pi}{4})

Solution:

\sin(\theta+\frac{\pi}{4})=\sin \theta \cos \frac{\pi}{4}+\cos \theta \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}(\sin \theta+ \cos \theta)

Finally

\sin(\theta+\frac{\pi}{4})=\frac{\sqrt{2}}{2}(\sin \theta+ \cos \theta)

Exercise 47:

Evaluate:

2-\cos^{2}\theta=4\sin^{2}\frac{\theta}{2}

Solution:

2-\cos^{2}\theta=4\sin^{2}\frac{\theta}{2}

2-\cos^{2}\theta-4\sin^{2}\frac{\theta}{2}=0

2(1-2\sin^{2}\frac{\theta}{2})-\cos^{2}\theta=0

2\cos \theta--\cos^{2}\theta=0

\cos {\theta} (2-\cos \theta)=0

Only the first factor:

\cos \theta=0

Two cases:

\theta_{1}=\frac{\pi}{2}+2k_{1}\pi

\theta_{2}=\frac{3\pi}{2}+2k_{2}\pi

Exercise 48:

Solve for \theta

4\sin^{2}{\theta}\tan {\theta}-\tan {\theta}=0

Solution:

4\sin^{2}{\theta}\tan {\theta}-\tan {\theta}=0

Ex48

We factor:
\tan {\theta}(4\sin^{2}{\theta}-1)=0

We have to check both factors:

First factor:
\tan {\theta}=0
\theta_{1}=0+2k_{1}\pi with k_{1} \in \mathbb{Z}

\theta_{2}=\pi+2k_{2}\pi with k_{2}\in \mathbb{Z}

Second Factor:
4\sin^{2}{\theta}-1=0
4\sin^{2}{\theta}=1
\sin^{2}{\theta}=\frac{1}{4}

Case when \sin {\theta}=\frac{1}{2}
Base angle here is \frac{\pi}{6}

\theta_{3}=\frac{\pi}{6}+2k_{3}\pi with k_{3}\in \mathbb{Z}

\theta_{4}=\pi-\frac{\pi}{6}+2k_{4}\pi=\frac{5\pi}{6}+2k_{4}\pi with k_{4}\in \mathbb{Z}

Case when \sin {\theta}=-\frac{1}{2}
Base angle here is \frac{\pi}{6}

\theta_{5}=\pi+\frac{\pi}{6}+2k_{5}\pi=\frac{7\pi}{6}+2k_{5}\pi   with k_{5}\in \mathbb{Z}

\theta_{6}=2\pi-\frac{\pi}{6}+2k_{6}\pi=\frac{11\pi}{6}+2k_{6}\pi   with k_{6}\in \mathbb{Z}

Finally all 6 solutions verify the equation:

\theta_{1}=0+2k_{1}\pi   with k_{1}\in \mathbb{Z}

\theta_{2}=\pi+2k_{2}\pi   with k_{2}\in \mathbb{Z}
\theta_{3}=\frac{\pi}{6}+2k_{3}\pi   with k_{3}\in \mathbb{Z}

\theta_{4}=\pi-\frac{\pi}{6}+2k_{4}\pi=\frac{5\pi}{6}+2k_{4}\pi   with k_{4}\in \mathbb{Z}
\theta_{5}=\pi+\frac{\pi}{6}+2k_{5}\pi=\frac{7\pi}{6}+2k_{5}\pi   with k_{5}\in \mathbb{Z}

\theta_{6}=2\pi-\frac{\pi}{6}+2k_{6}\pi=\frac{11\pi}{6}+2k_{6}\pi   with k_{6}\in \mathbb{Z}

Exercise 49:

Solve for x

\tan {x} \sin {x}-\sin {x}-\tan {x}+1=0

Solution:

\tan {x} \sin {x}-\sin {x}-\tan {x}+1=0

We can factor:

\sin {x}(\tan {x}-1)-(\tan {x}-1)=0

(\tan {x}-1)(\sin {x}-1)=0

Solutions:

\sin {x}-1=0

Base angle x=\frac{\pi}{2}

This will not satisfy the equation due the tangent.

ex49

\tan {x}-1=0

\tan {x}=1

Both following solutions are valid

x=\frac{\pi}{4}+2k_{1}\pi   (k_{1}\in \mathbb{Z})

x=\frac{5\pi}{4}+2k_{2}\pi   (k_{2}\in \mathbb{Z})

Exercise 50:

Solve for x

\cos (4x+\pi)=\cos(x+\frac{3\pi}{4})

Solution:

\cos (4x+\pi)=\cos(x+\frac{3\pi}{4})

Case 1:

4x+\pi=x+\frac{3\pi}{4}+2k_{1}\pi   (k_{1}\in \mathbb{Z})

3x=-\pi+\frac{3\pi}{4}+2k_{1}\pi   (k_{1}\in \mathbb{Z})

3x=-\frac{\pi}{4}+2k_{1}\pi   (k_{1}\in \mathbb{Z})

x=-\frac{\pi}{12}+\frac{2k_{1}\pi}{3}   (k_{1}\in \mathbb{Z})

Case 2:

4x+\pi=-(x+\frac{3\pi}{4})+2k_{2}\pi   (k_{2}\in \mathbb{Z})

4x=-x-\pi-\frac{3\pi}{4}+2k_{2}\pi   (k_{2}\in \mathbb{Z})

5x=-\pi-\frac{3\pi}{4}+2k_{2}\pi   (k_{2}\in \mathbb{Z})

x=-\frac{7\pi}{20}+\frac{2k_{2}\pi}{5}   (k_{2}\in \mathbb{Z})

Print Friendly, PDF & Email

Be the first to comment

Leave a Reply

Your email address will not be published.


*